Lecture 1: Entropy, Convexity, and Matrix Scaling

نویسنده

  • James R. Lee
چکیده

Moreover, if p , q, then the inequality is strict. A proof: The map u 7→ −u log u is strictly concave on [0, 1]; this follows from the fact that its derivative −(1 + log u) is strictly decreasing on [0, 1]. Now, a sum of concave functions is concave, so we conclude that H is concave. Moreover, if p , q, then they differ in some coordinate; strict concavity of the map u 7→ −u log u applied to that coordinate yields strong concavity of H.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lecture 2: Multiplicative Weights and Mirror Descent

In the last lecture, we considered thematrix scaling problem: Given non-negativematrices X, T ∈ ’n×n + , our goal was to find non-negative diagonal matrices D1 ,D2 so that D1XD2 had the same row and column sums as the target matrix T. In other words, we sought to weight the rows and columns of X by positive numbers in order to achieve this. We used entropy optimization to prove the following th...

متن کامل

Ricci curvature, entropy and optimal transport

This is the lecture notes on the interplay between optimal transport and Riemannian geometry. On a Riemannian manifold, the convexity of entropy along optimal transport in the space of probability measures characterizes lower bounds of the Ricci curvature. We then discuss geometric properties of general metric measure spaces satisfying this convexity condition. Mathematics Subject Classificatio...

متن کامل

ECE 587 / STA 563 : Lecture 2 – Measures of Information

2.1 Quantifying Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.2 Entropy and Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2.2 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.3 Example: Test...

متن کامل

Geodesic convexity of the relative entropy in reversible Markov chains

We consider finite-dimensional, time-continuous Markov chains satisfying the detailed balance condition as gradient systems with the relative entropy E as driving functional. The Riemannian metric is defined via its inverse matrix called the Onsager matrix K . We provide methods for establishing geodesic λ-convexity of the entropy and treat several examples including some more general nonlinear...

متن کامل

Notes on Free Probability Theory

Lecture 1. Free Independence and Free Harmonic Analysis. 2 1.1. Probability spaces. 2 1.2. Non-commutative probability spaces. 3 1.3. Classical independence. 4 1.4. Free products of non-commutative probability spaces. 5 1.5. Free Fock space. 6 1.6. Free Central Limit Theorem. 8 1.7. Free Harmonic Analysis. 10 1.8. Further topics. 16 Lecture 2. Random Matrices and Free Probability. 17 2.1. Rando...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016